1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351 |
- /*
- * Copyright 2014-2022 The GmSSL Project. All Rights Reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- */
- #include <stdio.h>
- #include <string.h>
- #include <assert.h>
- #include <gmssl/sm2.h>
- #include <gmssl/mem.h>
- #include <gmssl/asn1.h>
- #include <gmssl/rand.h>
- #include <gmssl/error.h>
- #include <gmssl/endian.h>
- #define sm2_print_bn(label,a) sm2_bn_print(stderr,0,0,label,a) // 这个不应该放在这里,应该放在测试文件中
- const SM2_BN SM2_P = {
- 0xffffffff, 0xffffffff, 0x00000000, 0xffffffff,
- 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe,
- };
- const SM2_BN SM2_B = {
- 0x4d940e93, 0xddbcbd41, 0x15ab8f92, 0xf39789f5,
- 0xcf6509a7, 0x4d5a9e4b, 0x9d9f5e34, 0x28e9fa9e,
- };
- const SM2_JACOBIAN_POINT _SM2_G = {
- {
- 0x334c74c7, 0x715a4589, 0xf2660be1, 0x8fe30bbf,
- 0x6a39c994, 0x5f990446, 0x1f198119, 0x32c4ae2c,
- },
- {
- 0x2139f0a0, 0x02df32e5, 0xc62a4740, 0xd0a9877c,
- 0x6b692153, 0x59bdcee3, 0xf4f6779c, 0xbc3736a2,
- },
- {
- 1, 0, 0, 0, 0, 0, 0, 0,
- },
- };
- const SM2_JACOBIAN_POINT *SM2_G = &_SM2_G;
- const SM2_BN SM2_N = {
- 0x39d54123, 0x53bbf409, 0x21c6052b, 0x7203df6b,
- 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe,
- };
- // u = (p - 1)/4, u + 1 = (p + 1)/4
- const SM2_BN SM2_U_PLUS_ONE = {
- 0x00000000, 0x40000000, 0xc0000000, 0xffffffff,
- 0xffffffff, 0xffffffff, 0xbfffffff, 0x3fffffff,
- };
- const SM2_BN SM2_ONE = {1,0,0,0,0,0,0,0};
- const SM2_BN SM2_TWO = {2,0,0,0,0,0,0,0};
- const SM2_BN SM2_THREE = {3,0,0,0,0,0,0,0};
- int sm2_bn_check(const SM2_BN a)
- {
- int err = 0;
- int i;
- for (i = 0; i < 8; i++) {
- if (a[i] > 0xffffffff) {
- fprintf(stderr, "%s %d: error\n", __FILE__, __LINE__);
- err++;
- }
- }
- if (err)
- return -1;
- else return 1;
- }
- int sm2_bn_is_zero(const SM2_BN a)
- {
- int i;
- for (i = 0; i < 8; i++) {
- if (a[i] != 0)
- return 0;
- }
- return 1;
- }
- int sm2_bn_is_one(const SM2_BN a)
- {
- int i;
- if (a[0] != 1)
- return 0;
- for (i = 1; i < 8; i++) {
- if (a[i] != 0)
- return 0;
- }
- return 1;
- }
- void sm2_bn_to_bytes(const SM2_BN a, uint8_t out[32])
- {
- int i;
- uint8_t *p = out;
- /*
- fprintf(stderr, "sm2_bn_to_bytes:\n");
- for (i = 0; i < 8; i++) {
- fprintf(stderr, "%016lx ", a[i]);
- }
- fprintf(stderr, "\n");
- */
- for (i = 7; i >= 0; i--) {
- uint32_t ai = (uint32_t)a[i];
- PUTU32(out, ai);
- out += sizeof(uint32_t);
- }
- /*
- for (i = 0; i < 32; i++) {
- fprintf(stderr, "%02X ", p[i]);
- }
- */
- }
- void sm2_bn_from_bytes(SM2_BN r, const uint8_t in[32])
- {
- int i;
- for (i = 7; i >= 0; i--) {
- r[i] = GETU32(in);
- in += sizeof(uint32_t);
- }
- }
- static int hexchar2int(char c)
- {
- if ('0' <= c && c <= '9') return c - '0';
- else if ('a' <= c && c <= 'f') return c - 'a' + 10;
- else if ('A' <= c && c <= 'F') return c - 'A' + 10;
- else return -1;
- }
- static int hex2bin(const char *in, size_t inlen, uint8_t *out)
- {
- int c;
- if (inlen % 2)
- return -1;
- while (inlen) {
- if ((c = hexchar2int(*in++)) < 0)
- return -1;
- *out = (uint8_t)c << 4;
- if ((c = hexchar2int(*in++)) < 0)
- return -1;
- *out |= (uint8_t)c;
- inlen -= 2;
- out++;
- }
- return 1;
- }
- void sm2_bn_to_hex(const SM2_BN a, char hex[64])
- {
- int i;
- for (i = 7; i >= 0; i--) {
- int len;
- len = sprintf(hex, "%08x", (uint32_t)a[i]);
- assert(len == 8);
- hex += 8;
- }
- }
- int sm2_bn_from_hex(SM2_BN r, const char hex[64])
- {
- uint8_t buf[32];
- if (hex2bin(hex, 64, buf) < 0)
- return -1;
- sm2_bn_from_bytes(r, buf);
- return 1;
- }
- int sm2_bn_from_asn1_integer(SM2_BN r, const uint8_t *d, size_t dlen)
- {
- uint8_t buf[32] = {0};
- if (!d || dlen == 0) {
- error_print();
- return -1;
- }
- if (dlen > sizeof(buf)) {
- error_print();
- return -1;
- }
- memcpy(buf + sizeof(buf) - dlen, d, dlen);
- sm2_bn_from_bytes(r, buf);
- return 1;
- }
- int sm2_bn_print(FILE *fp, int fmt, int ind, const char *label, const SM2_BN a)
- {
- int ret = 0, i;
- format_print(fp, fmt, ind, "%s: ", label);
- for (i = 7; i >= 0; i--) {
- if (a[i] >= ((uint64_t)1 << 32)) {
- printf("bn_print check failed\n");
- }
- ret += fprintf(fp, "%08x", (uint32_t)a[i]);
- }
- ret += fprintf(fp, "\n");
- return ret;
- }
- void sm2_bn_to_bits(const SM2_BN a, char bits[256])
- {
- int i, j;
- uint64_t w;
- for (i = 7; i >= 0; i--) {
- w = a[i];
- for (j = 0; j < 32; j++) {
- *bits++ = (w & 0x80000000) ? '1' : '0';
- w <<= 1;
- }
- }
- }
- int sm2_bn_cmp(const SM2_BN a, const SM2_BN b)
- {
- int i;
- for (i = 7; i >= 0; i--) {
- if (a[i] > b[i])
- return 1;
- if (a[i] < b[i])
- return -1;
- }
- return 0;
- }
- int sm2_bn_equ_hex(const SM2_BN a, const char *hex)
- {
- char buf[65] = {0};
- char *p = buf;
- int i;
- for (i = 7; i >= 0; i--) {
- sprintf(p, "%08x", (uint32_t)a[i]);
- p += 8;
- }
- return (strcmp(buf, hex) == 0);
- }
- int sm2_bn_is_odd(const SM2_BN a)
- {
- return a[0] & 0x01;
- }
- void sm2_bn_set_word(SM2_BN r, uint32_t a)
- {
- int i;
- r[0] = a;
- for (i = 1; i < 8; i++) {
- r[i] = 0;
- }
- }
- int sm2_bn_rshift(SM2_BN ret, const SM2_BN a, unsigned int nbits)
- {
- SM2_BN r;
- int i;
- if (nbits > 31) {
- error_print();
- return -1;
- }
- if (nbits == 0) {
- sm2_bn_copy(ret, a);
- }
- for (i = 0; i < 7; i++) {
- r[i] = a[i] >> nbits;
- r[i] |= (a[i+1] << (32 - nbits)) & 0xffffffff;
- }
- r[i] = a[i] >> nbits;
- sm2_bn_copy(ret, r);
- return 1;
- }
- void sm2_bn_add(SM2_BN r, const SM2_BN a, const SM2_BN b)
- {
- int i;
- r[0] = a[0] + b[0];
- for (i = 1; i < 8; i++) {
- r[i] = a[i] + b[i] + (r[i-1] >> 32);
- }
- for (i = 0; i < 7; i++) {
- r[i] &= 0xffffffff;
- }
- }
- void sm2_bn_sub(SM2_BN ret, const SM2_BN a, const SM2_BN b)
- {
- int i;
- SM2_BN r;
- r[0] = ((uint64_t)1 << 32) + a[0] - b[0];
- for (i = 1; i < 7; i++) {
- r[i] = 0xffffffff + a[i] - b[i] + (r[i - 1] >> 32);
- r[i - 1] &= 0xffffffff;
- }
- r[i] = a[i] - b[i] + (r[i - 1] >> 32) - 1;
- r[i - 1] &= 0xffffffff;
- sm2_bn_copy(ret, r);
- }
- int sm2_bn_rand_range(SM2_BN r, const SM2_BN range)
- {
- uint8_t buf[32];
- do {
- if (rand_bytes(buf, sizeof(buf)) != 1) {
- error_print();
- return -1;
- }
- sm2_bn_from_bytes(r, buf);
- } while (sm2_bn_cmp(r, range) >= 0);
- return 1;
- }
- int sm2_fp_rand(SM2_Fp r)
- {
- if (sm2_bn_rand_range(r, SM2_P) != 1) {
- error_print();
- return -1;
- }
- return 1;
- }
- void sm2_fp_add(SM2_Fp r, const SM2_Fp a, const SM2_Fp b)
- {
- sm2_bn_add(r, a, b);
- if (sm2_bn_cmp(r, SM2_P) >= 0) {
- sm2_bn_sub(r, r, SM2_P);
- }
- }
- void sm2_fp_sub(SM2_Fp r, const SM2_Fp a, const SM2_Fp b)
- {
- if (sm2_bn_cmp(a, b) >= 0) {
- sm2_bn_sub(r, a, b);
- } else {
- SM2_BN t;
- sm2_bn_sub(t, SM2_P, b);
- sm2_bn_add(r, t, a);
- }
- }
- void sm2_fp_dbl(SM2_Fp r, const SM2_Fp a)
- {
- sm2_fp_add(r, a, a);
- }
- void sm2_fp_tri(SM2_Fp r, const SM2_Fp a)
- {
- SM2_BN t;
- sm2_fp_dbl(t, a);
- sm2_fp_add(r, t, a);
- }
- void sm2_fp_div2(SM2_Fp r, const SM2_Fp a)
- {
- int i;
- sm2_bn_copy(r, a);
- if (r[0] & 0x01) {
- sm2_bn_add(r, r, SM2_P);
- }
- for (i = 0; i < 7; i++) {
- r[i] = (r[i] >> 1) | ((r[i + 1] & 0x01) << 31);
- }
- r[i] >>= 1;
- }
- void sm2_fp_neg(SM2_Fp r, const SM2_Fp a)
- {
- if (sm2_bn_is_zero(a)) {
- sm2_bn_copy(r, a);
- } else {
- sm2_bn_sub(r, SM2_P, a);
- }
- }
- void sm2_fp_mul(SM2_Fp r, const SM2_Fp a, const SM2_Fp b)
- {
- int i, j;
- uint64_t s[16] = {0};
- SM2_BN d = {0};
- uint64_t u;
- // s = a * b
- for (i = 0; i < 8; i++) {
- u = 0;
- for (j = 0; j < 8; j++) {
- u = s[i + j] + a[i] * b[j] + u;
- s[i + j] = u & 0xffffffff;
- u >>= 32;
- }
- s[i + 8] = u;
- }
- r[0] = s[0] + s[ 8] + s[ 9] + s[10] + s[11] + s[12] + ((s[13] + s[14] + s[15]) << 1);
- r[1] = s[1] + s[ 9] + s[10] + s[11] + s[12] + s[13] + ((s[14] + s[15]) << 1);
- r[2] = s[2];
- r[3] = s[3] + s[ 8] + s[11] + s[12] + s[14] + s[15] + (s[13] << 1);
- r[4] = s[4] + s[ 9] + s[12] + s[13] + s[15] + (s[14] << 1);
- r[5] = s[5] + s[10] + s[13] + s[14] + (s[15] << 1);
- r[6] = s[6] + s[11] + s[14] + s[15];
- r[7] = s[7] + s[ 8] + s[ 9] + s[10] + s[11] + s[15] + ((s[12] + s[13] + s[14] + s[15]) << 1);
- for (i = 1; i < 8; i++) {
- r[i] += r[i - 1] >> 32;
- r[i - 1] &= 0xffffffff;
- }
- d[2] = s[8] + s[9] + s[13] + s[14];
- d[3] = d[2] >> 32;
- d[2] &= 0xffffffff;
- sm2_bn_sub(r, r, d);
- // max times ?
- while (sm2_bn_cmp(r, SM2_P) >= 0) {
- sm2_bn_sub(r, r, SM2_P);
- }
- }
- void sm2_fp_sqr(SM2_Fp r, const SM2_Fp a)
- {
- sm2_fp_mul(r, a, a);
- }
- void sm2_fp_exp(SM2_Fp r, const SM2_Fp a, const SM2_Fp e)
- {
- SM2_BN t;
- uint32_t w;
- int i, j;
- sm2_bn_set_one(t);
- for (i = 7; i >= 0; i--) {
- w = (uint32_t)e[i];
- for (j = 0; j < 32; j++) {
- sm2_fp_sqr(t, t);
- if (w & 0x80000000)
- sm2_fp_mul(t, t, a);
- w <<= 1;
- }
- }
- sm2_bn_copy(r, t);
- }
- void sm2_fp_inv(SM2_Fp r, const SM2_Fp a)
- {
- SM2_BN a1;
- SM2_BN a2;
- SM2_BN a3;
- SM2_BN a4;
- SM2_BN a5;
- int i;
- sm2_fp_sqr(a1, a);
- sm2_fp_mul(a2, a1, a);
- sm2_fp_sqr(a3, a2);
- sm2_fp_sqr(a3, a3);
- sm2_fp_mul(a3, a3, a2);
- sm2_fp_sqr(a4, a3);
- sm2_fp_sqr(a4, a4);
- sm2_fp_sqr(a4, a4);
- sm2_fp_sqr(a4, a4);
- sm2_fp_mul(a4, a4, a3);
- sm2_fp_sqr(a5, a4);
- for (i = 1; i < 8; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a5, a5, a4);
- for (i = 0; i < 8; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a5, a5, a4);
- for (i = 0; i < 4; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a5, a5, a3);
- sm2_fp_sqr(a5, a5);
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a5, a5, a2);
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a5, a5, a);
- sm2_fp_sqr(a4, a5);
- sm2_fp_mul(a3, a4, a1);
- sm2_fp_sqr(a5, a4);
- for (i = 1; i< 31; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a4, a5, a4);
- sm2_fp_sqr(a4, a4);
- sm2_fp_mul(a4, a4, a);
- sm2_fp_mul(a3, a4, a2);
- for (i = 0; i < 33; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a2, a5, a3);
- sm2_fp_mul(a3, a2, a3);
- for (i = 0; i < 32; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a2, a5, a3);
- sm2_fp_mul(a3, a2, a3);
- sm2_fp_mul(a4, a2, a4);
- for (i = 0; i < 32; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a2, a5, a3);
- sm2_fp_mul(a3, a2, a3);
- sm2_fp_mul(a4, a2, a4);
- for (i = 0; i < 32; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a2, a5, a3);
- sm2_fp_mul(a3, a2, a3);
- sm2_fp_mul(a4, a2, a4);
- for (i = 0; i < 32; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(a2, a5, a3);
- sm2_fp_mul(a3, a2, a3);
- sm2_fp_mul(a4, a2, a4);
- for (i = 0; i < 32; i++)
- sm2_fp_sqr(a5, a5);
- sm2_fp_mul(r, a4, a5);
- sm2_bn_clean(a1);
- sm2_bn_clean(a2);
- sm2_bn_clean(a3);
- sm2_bn_clean(a4);
- sm2_bn_clean(a5);
- }
- int sm2_fp_sqrt(SM2_Fp r, const SM2_Fp a)
- {
- SM2_BN u;
- SM2_BN y; // temp result, prevent call sm2_fp_sqrt(a, a)
- // r = a^((p + 1)/4) when p = 3 (mod 4)
- sm2_bn_add(u, SM2_P, SM2_ONE);
- sm2_bn_rshift(u, u, 2);
- sm2_fp_exp(y, a, u);
- // check r^2 == a
- sm2_fp_sqr(u, y);
- if (sm2_bn_cmp(u, a) != 0) {
- error_print();
- return -1;
- }
- sm2_bn_copy(r, y);
- return 1;
- }
- void sm2_fn_add(SM2_Fn r, const SM2_Fn a, const SM2_Fn b)
- {
- sm2_bn_add(r, a, b);
- if (sm2_bn_cmp(r, SM2_N) >= 0) {
- sm2_bn_sub(r, r, SM2_N);
- }
- }
- void sm2_fn_sub(SM2_Fn r, const SM2_Fn a, const SM2_Fn b)
- {
- if (sm2_bn_cmp(a, b) >= 0) {
- sm2_bn_sub(r, a, b);
- } else {
- SM2_BN t;
- sm2_bn_add(t, a, SM2_N);
- sm2_bn_sub(r, t, b);
- }
- }
- void sm2_fn_neg(SM2_Fn r, const SM2_Fn a)
- {
- if (sm2_bn_is_zero(a)) {
- sm2_bn_copy(r, a);
- } else {
- sm2_bn_sub(r, SM2_N, a);
- }
- }
- /* bn288 only used in barrett reduction */
- static int sm2_bn288_cmp(const uint64_t a[9], const uint64_t b[9])
- {
- int i;
- for (i = 8; i >= 0; i--) {
- if (a[i] > b[i])
- return 1;
- if (a[i] < b[i])
- return -1;
- }
- return 0;
- }
- static void sm2_bn288_add(uint64_t r[9], const uint64_t a[9], const uint64_t b[9])
- {
- int i;
- r[0] = a[0] + b[0];
- for (i = 1; i < 9; i++) {
- r[i] = a[i] + b[i] + (r[i-1] >> 32);
- }
- for (i = 0; i < 8; i++) {
- r[i] &= 0xffffffff;
- }
- }
- static void sm2_bn288_sub(uint64_t ret[9], const uint64_t a[9], const uint64_t b[9])
- {
- int i;
- uint64_t r[9];
- r[0] = ((uint64_t)1 << 32) + a[0] - b[0];
- for (i = 1; i < 8; i++) {
- r[i] = 0xffffffff + a[i] - b[i] + (r[i - 1] >> 32);
- r[i - 1] &= 0xffffffff;
- }
- r[i] = a[i] - b[i] + (r[i - 1] >> 32) - 1;
- r[i - 1] &= 0xffffffff;
- for (i = 0; i < 9; i++) {
- ret[i] = r[i];
- }
- }
- void sm2_fn_mul(SM2_BN ret, const SM2_BN a, const SM2_BN b)
- {
- SM2_BN r;
- static const uint64_t mu[9] = {
- 0xf15149a0, 0x12ac6361, 0xfa323c01, 0x8dfc2096, 1, 1, 1, 1, 1,
- };
- uint64_t s[18];
- uint64_t zh[9];
- uint64_t zl[9];
- uint64_t q[9];
- uint64_t w;
- int i, j;
- /* z = a * b */
- for (i = 0; i < 8; i++) {
- s[i] = 0;
- }
- for (i = 0; i < 8; i++) {
- w = 0;
- for (j = 0; j < 8; j++) {
- w += s[i + j] + a[i] * b[j];
- s[i + j] = w & 0xffffffff;
- w >>= 32;
- }
- s[i + 8] = w;
- }
- /* zl = z mod (2^32)^9 = z[0..8]
- * zh = z // (2^32)^7 = z[7..15] */
- for (i = 0; i < 9; i++) {
- zl[i] = s[i];
- zh[i] = s[7 + i];
- }
- //printf("zl = "); for (i = 8; i >= 0; i--) printf("%08x", (uint32_t)zl[i]); printf("\n");
- //printf("zh = "); for (i = 8; i >= 0; i--) printf("%08x", (uint32_t)zh[i]); printf("\n");
- /* q = zh * mu // (2^32)^9 */
- for (i = 0; i < 9; i++) {
- s[i] = 0;
- }
- for (i = 0; i < 9; i++) {
- w = 0;
- for (j = 0; j < 9; j++) {
- w += s[i + j] + zh[i] * mu[j];
- s[i + j] = w & 0xffffffff;
- w >>= 32;
- }
- s[i + 9] = w;
- }
- for (i = 0; i < 8; i++) {
- q[i] = s[9 + i];
- }
- //printf("q = "); for (i = 7; i >= 0; i--) printf("%08x", (uint32_t)q[i]); printf("\n");
- /* q = q * n mod (2^32)^9 */
- for (i = 0; i < 17; i++) {
- s[i] = 0;
- }
- for (i = 0; i < 8; i++) {
- w = 0;
- for (j = 0; j < 8; j++) {
- w += s[i + j] + q[i] * SM2_N[j];
- s[i + j] = w & 0xffffffff;
- w >>= 32;
- }
- s[i + 8] = w;
- }
- for (i = 0; i < 9; i++) {
- q[i] = s[i];
- }
- //printf("qn = "); for (i = 8; i >= 0; i--) printf("%08x ", (uint32_t)q[i]); printf("\n");
- /* r = zl - q (mod (2^32)^9) */
- if (sm2_bn288_cmp(zl, q)) {
- sm2_bn288_sub(zl, zl, q);
- } else {
- uint64_t c[9] = {0,0,0,0,0,0,0,0,0x100000000};
- sm2_bn288_sub(q, c, q);
- sm2_bn288_add(zl, q, zl);
- }
- //printf("zl = "); for (i = 8; i >= 0; i--) printf("%08x ", (uint32_t)zl[i]); printf("\n");
- for (i = 0; i < 8; i++) {
- r[i] = zl[i];
- }
- r[7] += zl[8] << 32;
- /* while r >= p do: r = r - n */
- while (sm2_bn_cmp(r, SM2_N) >= 0) {
- sm2_bn_sub(r, r, SM2_N);
- //printf("r-n = "); for (i = 7; i >= 0; i--) printf("%16llx ", r[i]); printf("\n");
- }
- sm2_bn_copy(ret, r);
- }
- void sm2_fn_mul_word(SM2_Fn r, const SM2_Fn a, uint32_t b)
- {
- SM2_Fn t;
- sm2_bn_set_word(t, b);
- sm2_fn_mul(r, a, t);
- }
- void sm2_fn_sqr(SM2_BN r, const SM2_BN a)
- {
- sm2_fn_mul(r, a, a);
- }
- void sm2_fn_exp(SM2_BN r, const SM2_BN a, const SM2_BN e)
- {
- SM2_BN t;
- uint32_t w;
- int i, j;
- sm2_bn_set_one(t);
- for (i = 7; i >= 0; i--) {
- w = (uint32_t)e[i];
- for (j = 0; j < 32; j++) {
- sm2_fn_sqr(t, t);
- if (w & 0x80000000) {
- sm2_fn_mul(t, t, a);
- }
- w <<= 1;
- }
- }
- sm2_bn_copy(r, t);
- }
- void sm2_fn_inv(SM2_BN r, const SM2_BN a)
- {
- SM2_BN e;
- sm2_bn_sub(e, SM2_N, SM2_TWO);
- sm2_fn_exp(r, a, e);
- }
- int sm2_fn_rand(SM2_BN r)
- {
- if (sm2_bn_rand_range(r, SM2_N) != 1) {
- error_print();
- return -1;
- }
- return 1;
- }
- void sm2_jacobian_point_init(SM2_JACOBIAN_POINT *R)
- {
- memset(R, 0, sizeof(SM2_JACOBIAN_POINT));
- R->X[0] = 1;
- R->Y[0] = 1;
- }
- int sm2_jacobian_point_is_at_infinity(const SM2_JACOBIAN_POINT *P)
- {
- return sm2_bn_is_zero(P->Z);
- }
- void sm2_jacobian_point_set_xy(SM2_JACOBIAN_POINT *R, const SM2_BN x, const SM2_BN y)
- {
- sm2_bn_copy(R->X, x);
- sm2_bn_copy(R->Y, y);
- sm2_bn_set_one(R->Z);
- }
- void sm2_jacobian_point_get_xy(const SM2_JACOBIAN_POINT *P, SM2_BN x, SM2_BN y)
- {
- if (sm2_bn_is_one(P->Z)) {
- sm2_bn_copy(x, P->X);
- if (y) {
- sm2_bn_copy(y, P->Y);
- }
- } else {
- SM2_BN z_inv;
- sm2_fp_inv(z_inv, P->Z);
- if (y) {
- sm2_fp_mul(y, P->Y, z_inv);
- }
- sm2_fp_sqr(z_inv, z_inv);
- sm2_fp_mul(x, P->X, z_inv);
- if (y) {
- sm2_fp_mul(y, y, z_inv);
- }
- }
- }
- int sm2_jacobian_pointpoint_print(FILE *fp, int fmt, int ind, const char *label, const SM2_JACOBIAN_POINT *P)
- {
- int len = 0;
- SM2_BN x;
- SM2_BN y;
- format_print(fp, fmt, ind, "%s\n", label);
- ind += 4;
- sm2_jacobian_point_get_xy(P, x, y);
- sm2_bn_print(fp, fmt, ind, "x", x);
- sm2_bn_print(fp, fmt, ind, "y", y);
- return 1;
- }
- int sm2_jacobian_point_is_on_curve(const SM2_JACOBIAN_POINT *P)
- {
- SM2_BN t0;
- SM2_BN t1;
- SM2_BN t2;
- if (sm2_bn_is_one(P->Z)) {
- sm2_fp_sqr(t0, P->Y);
- sm2_fp_add(t0, t0, P->X);
- sm2_fp_add(t0, t0, P->X);
- sm2_fp_add(t0, t0, P->X);
- sm2_fp_sqr(t1, P->X);
- sm2_fp_mul(t1, t1, P->X);
- sm2_fp_add(t1, t1, SM2_B);
- } else {
- sm2_fp_sqr(t0, P->Y);
- sm2_fp_sqr(t1, P->Z);
- sm2_fp_sqr(t2, t1);
- sm2_fp_mul(t1, t1, t2);
- sm2_fp_mul(t1, t1, SM2_B);
- sm2_fp_mul(t2, t2, P->X);
- sm2_fp_add(t0, t0, t2);
- sm2_fp_add(t0, t0, t2);
- sm2_fp_add(t0, t0, t2);
- sm2_fp_sqr(t2, P->X);
- sm2_fp_mul(t2, t2, P->X);
- sm2_fp_add(t1, t1, t2);
- }
- if (sm2_bn_cmp(t0, t1) != 0) {
- error_print();
- return -1;
- }
- return 1;
- }
- void sm2_jacobian_point_neg(SM2_JACOBIAN_POINT *R, const SM2_JACOBIAN_POINT *P)
- {
- sm2_bn_copy(R->X, P->X);
- sm2_fp_neg(R->Y, P->Y);
- sm2_bn_copy(R->Z, P->Z);
- }
- void sm2_jacobian_point_dbl(SM2_JACOBIAN_POINT *R, const SM2_JACOBIAN_POINT *P)
- {
- const uint64_t *X1 = P->X;
- const uint64_t *Y1 = P->Y;
- const uint64_t *Z1 = P->Z;
- SM2_BN T1;
- SM2_BN T2;
- SM2_BN T3;
- SM2_BN X3;
- SM2_BN Y3;
- SM2_BN Z3;
- //printf("X1 = "); print_bn(X1);
- //printf("Y1 = "); print_bn(Y1);
- //printf("Z1 = "); print_bn(Z1);
- if (sm2_jacobian_point_is_at_infinity(P)) {
- sm2_jacobian_point_copy(R, P);
- return;
- }
- sm2_fp_sqr(T1, Z1); //printf("T1 = Z1^2 = "); print_bn(T1);
- sm2_fp_sub(T2, X1, T1); //printf("T2 = X1 - T1 = "); print_bn(T2);
- sm2_fp_add(T1, X1, T1); //printf("T1 = X1 + T1 = "); print_bn(T1);
- sm2_fp_mul(T2, T2, T1); //printf("T2 = T2 * T1 = "); print_bn(T2);
- sm2_fp_tri(T2, T2); //printf("T2 = 3 * T2 = "); print_bn(T2);
- sm2_fp_dbl(Y3, Y1); //printf("Y3 = 2 * Y1 = "); print_bn(Y3);
- sm2_fp_mul(Z3, Y3, Z1); //printf("Z3 = Y3 * Z1 = "); print_bn(Z3);
- sm2_fp_sqr(Y3, Y3); //printf("Y3 = Y3^2 = "); print_bn(Y3);
- sm2_fp_mul(T3, Y3, X1); //printf("T3 = Y3 * X1 = "); print_bn(T3);
- sm2_fp_sqr(Y3, Y3); //printf("Y3 = Y3^2 = "); print_bn(Y3);
- sm2_fp_div2(Y3, Y3); //printf("Y3 = Y3/2 = "); print_bn(Y3);
- sm2_fp_sqr(X3, T2); //printf("X3 = T2^2 = "); print_bn(X3);
- sm2_fp_dbl(T1, T3); //printf("T1 = 2 * T1 = "); print_bn(T1);
- sm2_fp_sub(X3, X3, T1); //printf("X3 = X3 - T1 = "); print_bn(X3);
- sm2_fp_sub(T1, T3, X3); //printf("T1 = T3 - X3 = "); print_bn(T1);
- sm2_fp_mul(T1, T1, T2); //printf("T1 = T1 * T2 = "); print_bn(T1);
- sm2_fp_sub(Y3, T1, Y3); //printf("Y3 = T1 - Y3 = "); print_bn(Y3);
- sm2_bn_copy(R->X, X3);
- sm2_bn_copy(R->Y, Y3);
- sm2_bn_copy(R->Z, Z3);
- //printf("X3 = "); print_bn(R->X);
- //printf("Y3 = "); print_bn(R->Y);
- //printf("Z3 = "); print_bn(R->Z);
- }
- void sm2_jacobian_point_add(SM2_JACOBIAN_POINT *R, const SM2_JACOBIAN_POINT *P, const SM2_JACOBIAN_POINT *Q)
- {
- const uint64_t *X1 = P->X;
- const uint64_t *Y1 = P->Y;
- const uint64_t *Z1 = P->Z;
- const uint64_t *x2 = Q->X;
- const uint64_t *y2 = Q->Y;
- SM2_BN T1;
- SM2_BN T2;
- SM2_BN T3;
- SM2_BN T4;
- SM2_BN X3;
- SM2_BN Y3;
- SM2_BN Z3;
- if (sm2_jacobian_point_is_at_infinity(Q)) {
- sm2_jacobian_point_copy(R, P);
- return;
- }
- if (sm2_jacobian_point_is_at_infinity(P)) {
- sm2_jacobian_point_copy(R, Q);
- return;
- }
- assert(sm2_bn_is_one(Q->Z));
- sm2_fp_sqr(T1, Z1);
- sm2_fp_mul(T2, T1, Z1);
- sm2_fp_mul(T1, T1, x2);
- sm2_fp_mul(T2, T2, y2);
- sm2_fp_sub(T1, T1, X1);
- sm2_fp_sub(T2, T2, Y1);
- if (sm2_bn_is_zero(T1)) {
- if (sm2_bn_is_zero(T2)) {
- SM2_JACOBIAN_POINT _Q, *Q = &_Q;
- sm2_jacobian_point_set_xy(Q, x2, y2);
- sm2_jacobian_point_dbl(R, Q);
- return;
- } else {
- sm2_jacobian_point_set_infinity(R);
- return;
- }
- }
- sm2_fp_mul(Z3, Z1, T1);
- sm2_fp_sqr(T3, T1);
- sm2_fp_mul(T4, T3, T1);
- sm2_fp_mul(T3, T3, X1);
- sm2_fp_dbl(T1, T3);
- sm2_fp_sqr(X3, T2);
- sm2_fp_sub(X3, X3, T1);
- sm2_fp_sub(X3, X3, T4);
- sm2_fp_sub(T3, T3, X3);
- sm2_fp_mul(T3, T3, T2);
- sm2_fp_mul(T4, T4, Y1);
- sm2_fp_sub(Y3, T3, T4);
- sm2_bn_copy(R->X, X3);
- sm2_bn_copy(R->Y, Y3);
- sm2_bn_copy(R->Z, Z3);
- }
- void sm2_jacobian_point_sub(SM2_JACOBIAN_POINT *R, const SM2_JACOBIAN_POINT *P, const SM2_JACOBIAN_POINT *Q)
- {
- SM2_JACOBIAN_POINT _T, *T = &_T;
- sm2_jacobian_point_neg(T, Q);
- sm2_jacobian_point_add(R, P, T);
- }
- void sm2_jacobian_point_mul(SM2_JACOBIAN_POINT *R, const SM2_BN k, const SM2_JACOBIAN_POINT *P)
- {
- char bits[257] = {0};
- SM2_JACOBIAN_POINT _Q, *Q = &_Q;
- SM2_JACOBIAN_POINT _T, *T = &_T;
- int i;
- // FIXME: point_add need affine, so we can not use point_add
- if (!sm2_bn_is_one(P->Z)) {
- SM2_BN x;
- SM2_BN y;
- sm2_jacobian_point_get_xy(P, x, y);
- sm2_jacobian_point_set_xy(T, x, y);
- P = T;
- }
- sm2_jacobian_point_set_infinity(Q);
- sm2_bn_to_bits(k, bits);
- for (i = 0; i < 256; i++) {
- sm2_jacobian_point_dbl(Q, Q);
- if (bits[i] == '1') {
- sm2_jacobian_point_add(Q, Q, P);
- }
- }
- sm2_jacobian_point_copy(R, Q);
- }
- void sm2_jacobian_point_to_bytes(const SM2_JACOBIAN_POINT *P, uint8_t out[64])
- {
- SM2_BN x;
- SM2_BN y;
- sm2_jacobian_point_get_xy(P, x, y);
- sm2_bn_to_bytes(x, out);
- sm2_bn_to_bytes(y, out + 32);
- }
- void sm2_jacobian_point_from_bytes(SM2_JACOBIAN_POINT *P, const uint8_t in[64])
- {
- sm2_bn_from_bytes(P->X, in);
- sm2_bn_from_bytes(P->Y, in + 32);
- sm2_bn_set_word(P->Z, 1);
- /* should we check if sm2_jacobian_point_is_on_curve */
- }
- void sm2_jacobian_point_mul_generator(SM2_JACOBIAN_POINT *R, const SM2_BN k)
- {
- sm2_jacobian_point_mul(R, k, SM2_G);
- }
- /* R = t * P + s * G */
- void sm2_jacobian_point_mul_sum(SM2_JACOBIAN_POINT *R, const SM2_BN t, const SM2_JACOBIAN_POINT *P, const SM2_BN s)
- {
- SM2_JACOBIAN_POINT _sG, *sG = &_sG;
- SM2_BN x;
- SM2_BN y;
- /* T = s * G */
- sm2_jacobian_point_mul_generator(sG, s);
- // R = t * P
- sm2_jacobian_point_mul(R, t, P);
- sm2_jacobian_point_get_xy(R, x, y);
- sm2_jacobian_point_set_xy(R, x, y);
- // R = R + T
- sm2_jacobian_point_add(R, sG, R);
- }
- void sm2_jacobian_point_from_hex(SM2_JACOBIAN_POINT *P, const char hex[64 * 2])
- {
- sm2_bn_from_hex(P->X, hex);
- sm2_bn_from_hex(P->Y, hex + 64);
- sm2_bn_set_one(P->Z);
- }
- int sm2_jacobian_point_equ_hex(const SM2_JACOBIAN_POINT *P, const char hex[128])
- {
- SM2_BN x;
- SM2_BN y;
- SM2_JACOBIAN_POINT _T, *T = &_T;
- sm2_jacobian_point_get_xy(P, x, y);
- sm2_jacobian_point_from_hex(T, hex);
- return (sm2_bn_cmp(x, T->X) == 0) && (sm2_bn_cmp(y, T->Y) == 0);
- }
- int sm2_point_is_on_curve(const SM2_POINT *P)
- {
- SM2_JACOBIAN_POINT T;
- sm2_jacobian_point_from_bytes(&T, (const uint8_t *)P);
- return sm2_jacobian_point_is_on_curve(&T);
- }
- int sm2_point_is_at_infinity(const SM2_POINT *P)
- {
- return mem_is_zero((uint8_t *)P, sizeof(SM2_POINT));
- }
- int sm2_point_from_x(SM2_POINT *P, const uint8_t x[32], int y)
- {
- SM2_BN _x, _y, _g, _z;
- sm2_bn_from_bytes(_x, x);
- // g = x^3 - 3x + b = (x^2 - 3)*x + b
- sm2_fp_sqr(_g, _x);
- sm2_fp_sub(_g, _g, SM2_THREE);
- sm2_fp_mul(_g, _g, _x);
- sm2_fp_add(_g, _g, SM2_B);
- // y = g^(u + 1) mod p, u = (p - 3)/4
- sm2_fp_exp(_y, _g, SM2_U_PLUS_ONE);
- // z = y^2 mod p
- sm2_fp_sqr(_z, _y);
- if (sm2_bn_cmp(_z, _g)) {
- error_print();
- return -1;
- }
- if ((y == 0x02 && sm2_bn_is_odd(_y)) || (y == 0x03) && !sm2_bn_is_odd(_y)) {
- sm2_fp_neg(_y, _y);
- }
- sm2_bn_to_bytes(_x, P->x);
- sm2_bn_to_bytes(_y, P->y);
- sm2_bn_clean(_x);
- sm2_bn_clean(_y);
- sm2_bn_clean(_g);
- sm2_bn_clean(_z);
- if (!sm2_point_is_on_curve(P)) {
- error_print();
- return -1;
- }
- return 1;
- }
- int sm2_point_from_xy(SM2_POINT *P, const uint8_t x[32], const uint8_t y[32])
- {
- memcpy(P->x, x, 32);
- memcpy(P->y, y, 32);
- return sm2_point_is_on_curve(P);
- }
- int sm2_point_add(SM2_POINT *R, const SM2_POINT *P, const SM2_POINT *Q)
- {
- SM2_JACOBIAN_POINT P_;
- SM2_JACOBIAN_POINT Q_;
- sm2_jacobian_point_from_bytes(&P_, (uint8_t *)P);
- sm2_jacobian_point_from_bytes(&Q_, (uint8_t *)Q);
- sm2_jacobian_point_add(&P_, &P_, &Q_);
- sm2_jacobian_point_to_bytes(&P_, (uint8_t *)R);
- return 1;
- }
- int sm2_point_sub(SM2_POINT *R, const SM2_POINT *P, const SM2_POINT *Q)
- {
- SM2_JACOBIAN_POINT P_;
- SM2_JACOBIAN_POINT Q_;
- sm2_jacobian_point_from_bytes(&P_, (uint8_t *)P);
- sm2_jacobian_point_from_bytes(&Q_, (uint8_t *)Q);
- sm2_jacobian_point_sub(&P_, &P_, &Q_);
- sm2_jacobian_point_to_bytes(&P_, (uint8_t *)R);
- return 1;
- }
- int sm2_point_neg(SM2_POINT *R, const SM2_POINT *P)
- {
- SM2_JACOBIAN_POINT P_;
- sm2_jacobian_point_from_bytes(&P_, (uint8_t *)P);
- sm2_jacobian_point_neg(&P_, &P_);
- sm2_jacobian_point_to_bytes(&P_, (uint8_t *)R);
- return 1;
- }
- int sm2_point_dbl(SM2_POINT *R, const SM2_POINT *P)
- {
- SM2_JACOBIAN_POINT P_;
- sm2_jacobian_point_from_bytes(&P_, (uint8_t *)P);
- sm2_jacobian_point_dbl(&P_, &P_);
- sm2_jacobian_point_to_bytes(&P_, (uint8_t *)R);
- return 1;
- }
- int sm2_point_mul(SM2_POINT *R, const uint8_t k[32], const SM2_POINT *P)
- {
- SM2_BN _k;
- SM2_JACOBIAN_POINT _P;
- sm2_bn_from_bytes(_k, k);
- sm2_jacobian_point_from_bytes(&_P, (uint8_t *)P);
- sm2_jacobian_point_mul(&_P, _k, &_P);
- sm2_jacobian_point_to_bytes(&_P, (uint8_t *)R);
- sm2_bn_clean(_k);
- return 1;
- }
- int sm2_point_mul_generator(SM2_POINT *R, const uint8_t k[32])
- {
- SM2_BN _k;
- SM2_JACOBIAN_POINT _R;
- sm2_bn_from_bytes(_k, k);
- sm2_jacobian_point_mul_generator(&_R, _k);
- sm2_jacobian_point_to_bytes(&_R, (uint8_t *)R);
- sm2_bn_clean(_k);
- return 1;
- }
- int sm2_point_mul_sum(SM2_POINT *R, const uint8_t k[32], const SM2_POINT *P, const uint8_t s[32])
- {
- SM2_BN _k;
- SM2_JACOBIAN_POINT _P;
- SM2_BN _s;
- sm2_bn_from_bytes(_k, k);
- sm2_jacobian_point_from_bytes(&_P, (uint8_t *)P);
- sm2_bn_from_bytes(_s, s);
- sm2_jacobian_point_mul_sum(&_P, _k, &_P, _s);
- sm2_jacobian_point_to_bytes(&_P, (uint8_t *)R);
- sm2_bn_clean(_k);
- sm2_bn_clean(_s);
- return 1;
- }
- int sm2_point_print(FILE *fp, int fmt, int ind, const char *label, const SM2_POINT *P)
- {
- format_print(fp, fmt, ind, "%s\n", label);
- ind += 4;
- format_bytes(fp, fmt, ind, "x", P->x, 32);
- format_bytes(fp, fmt, ind, "y", P->y, 32);
- return 1;
- }
- void sm2_point_to_compressed_octets(const SM2_POINT *P, uint8_t out[33])
- {
- *out++ = (P->y[31] & 0x01) ? 0x03 : 0x02;
- memcpy(out, P->x, 32);
- }
- void sm2_point_to_uncompressed_octets(const SM2_POINT *P, uint8_t out[65])
- {
- *out++ = 0x04;
- memcpy(out, P, 64);
- }
- int sm2_point_from_octets(SM2_POINT *P, const uint8_t *in, size_t inlen)
- {
- if ((*in == 0x02 || *in == 0x03) && inlen == 33) {
- if (sm2_point_from_x(P, in + 1, *in) != 1) {
- error_print();
- return -1;
- }
- } else if (*in == 0x04 && inlen == 65) {
- if (sm2_point_from_xy(P, in + 1, in + 33) != 1) {
- error_print();
- return -1;
- }
- } else {
- error_print();
- return -1;
- }
- return 1;
- }
- int sm2_point_to_der(const SM2_POINT *P, uint8_t **out, size_t *outlen)
- {
- uint8_t octets[65];
- if (!P) {
- return 0;
- }
- sm2_point_to_uncompressed_octets(P, octets);
- if (asn1_octet_string_to_der(octets, sizeof(octets), out, outlen) != 1) {
- error_print();
- return -1;
- }
- return 1;
- }
- int sm2_point_from_der(SM2_POINT *P, const uint8_t **in, size_t *inlen)
- {
- int ret;
- const uint8_t *d;
- size_t dlen;
- if ((ret = asn1_octet_string_from_der(&d, &dlen, in, inlen)) != 1) {
- if (ret < 0) error_print();
- return ret;
- }
- if (dlen != 65) {
- error_print();
- return -1;
- }
- if (sm2_point_from_octets(P, d, dlen) != 1) {
- error_print();
- return -1;
- }
- return 1;
- }
- int sm2_point_from_hash(SM2_POINT *R, const uint8_t *data, size_t datalen)
- {
- SM2_BN u;
- SM2_Fp x;
- SM2_Fp y;
- SM2_Fp s;
- SM2_Fp s_;
- uint8_t dgst[32];
- // u = (p + 1)/4
- sm2_bn_add(u, SM2_P, SM2_ONE);
- sm2_bn_rshift(u, u, 2);
- do {
- sm3_digest(data, datalen, dgst);
- sm2_bn_from_bytes(x, dgst);
- if (sm2_bn_cmp(x, SM2_P) >= 0) {
- sm2_bn_sub(x, x, SM2_P);
- }
- // s = y^2 = x^3 + a*x + b
- sm2_fp_sqr(s, x);
- sm2_fp_sub(s, s, SM2_THREE);
- sm2_fp_mul(s, s, x);
- sm2_fp_add(s, s, SM2_B);
- // y = s^((p+1)/4) = (sqrt(s) (mod p))
- sm2_fp_exp(y, s, u);
- sm2_fp_sqr(s_, y);
- data = dgst;
- datalen = sizeof(dgst);
- } while (sm2_bn_cmp(s, s_) != 0);
- sm2_bn_to_bytes(x, R->x);
- sm2_bn_to_bytes(y, R->y);
- return 1;
- }
|